Two-Dimensional Electronic Spectroscopy of Semiconducting Single-Walled Carbon Nanotubes
نویسندگان
چکیده
Application of 2D Fourier transform electronic spectroscopy to semiconducting SWNTs is demonstrated to decongest complex exciton dynamics. Analysis provides the E22 homogeneous linewidth, and elucidates the roles of vibrational and multi-exciton states in population relaxation.
منابع مشابه
Two-dimensional electronic spectroscopy reveals the dynamics of phonon-mediated excitation pathways in semiconducting single-walled carbon nanotubes.
Electronic two-dimensional Fourier transform (2D-FT) spectroscopy is applied to semiconducting single-walled carbon nanotubes and provides a spectral and time-domain map of exciton-phonon assisted excitations. Using 12 fs long pulses, we resolve side-bands above the E(22) transition that correspond with the RBM, G, G', 2G and other multiphonon modes. The appearance of 2D-FT spectral cross-peaks...
متن کاملNear-field imaging and spectroscopy of electronic states in single-walled carbon nanotubes
Near-field photoluminescence spectroscopy was used to study the electronic properties of semiconducting Single-Walled Carbon Nanotubes in different environments. A sharp laser-illuminated metal tip was raster scanned over the sample and served as a strongly confined excitation source. We observed localization of photoluminescence and variations of emission energies along nanotubes on a length s...
متن کاملElectronic Raman Scattering On Individual Semiconducting Single Walled Carbon Nanotubes
We report experimental measurements of electronic Raman scattering by electrons (holes) in individual single-walled carbon nanotubes (SWNTs) under resonant conditions. The Raman scattering at low frequency range reveals a single particle excitation feature. And the dispersion of electronic structure around the center of Brillouin zone of a semiconducting SWNT (14, 13) is extracted.
متن کاملOptical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure.
We simultaneously determined the physical structure and optical transition energies of individual single-walled carbon nanotubes by combining electron diffraction with Rayleigh scattering spectroscopy. These results test fundamental features of the excited electronic states of carbon nanotubes. We directly verified the systematic changes in transition energies of semiconducting nanotubes as a f...
متن کاملTheoretical insights into the encapsulation of anticancer Oxaliplatin drug into single walled carbon nanotubes
The present work was an attempt to evaluate the potentialities of using SWCNTs as nanovectors for drug delivery of anticancer drug Oxaliplatin. First-principles van der Waals density functional (vdW-DF) calculations are used to investigate the incorporation of oxaliplatin inside the typical semiconducting and metallic single wall carbon nanotubes with various diameters (SWCNTs). Adsorption ener...
متن کامل